Salvo
Kayıtlı Üye
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
CHAPTER 1
H i s t o r i c a l Introduction . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Early History . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Astronomical Observations . . . . . . . . . . . . . . . . . . 3
1.3. Carbon Cluster Studies . . . . . . . . . . . . . . . . . . . 3
1.4. Recent History . . . . . . . . . . . . . . . . . . . . . . . 6
1.5. Architectural Analogs . . . . . . . . . . . . . . . . . . . . 7
1.6. Biological and Geological Examples . . . . . . . . . . . . . . 9
1.7. Road Map . . . . . . . . . . . . . . . . . . . . . . . . . 12
References . . . . . . . . . . . . . . . . . . . . . . . . . 13
CHAPTER 2
Carbon Materials . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1. General Considerations . . . . . . . . . . . . . . . . . . . 15
2.2. Graphite . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3. Graphite Materials . . . . . . . . . . . . . . . . . . . . . 20
2.4. Graphite Whiskers . . . . . . . . . . . . . . . . . . . . . 21
2.5. Carbon Fibers . . . . . . . . . . . . . . . . . . . . . . . 21
2.6. Glassy Carbon . . . . . . . . . . . . . . . . . . . . . . . 24
2.7. Carbon Blacks . . . . . . . . . . . . . . . . . . . . . . . 25
2.8. Carbon Coated Carbide Particles . . . . . . . . . . . . . . . 29
2.9. Carbynes . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.10. Carbolites . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.11. Amorphous Carbon . . . . . . . . . . . . . . . . . . . . . 33
....CHAPTER 19
C60-Related Tubules and Spherules . . . . . . . . . . . . . . . . 756
19.1. Relation between Tubules and Fullerenes . . . . . . . . . . . 757
19.2. Experimental Observation of Carbon Nanotubes . . . . . . . . 761
19.2.1. Observation of Multiwall Carbon Nanotubes . . . . . . 761
19.2.2. Observation of Single-Wall Carbon Nanotubes . . . . . 765
19.2.3. Tubule Caps and Chirality . . . . . . . . . . . . . . 769
19.2.4. Carbon Nanocones . . . . . . . . . . . . . . . . . 777
19.2.5. Nanotube Synthesis . . . . . . . . . . . . . . . . . 778
19.2.6. Alignment of Nanotubes . . . . . . . . . . . . . . 785
19.3. Growth Mechanism . . . . . . . . . . . . . . . . . . . . 785
19.4. Symmetry Properties of Carbon Nanotubes . . . . . . . . . . 791
19.4.1. Specification of Lattice Vectors in Real Space . . . . . 791
19.4.2. Symmetry for Symmorphic Carbon Tubules . . . . . . 795
19.4.3. Symmetry for Nonsymmorphic Carbon Tubules . . . . . 797
19.4.4. Reciprocal Lattice Vectors . . . . . . . . . . . . . . 800
19.5. Electronic Structure: Theoretical Predictions . . . . . . . . . 802
19.5.1. Single-Wall Symmorphic Tubules . . . . . . . . . . . 803
19.5.2. Single-Wall Nonsymmorphic Chiral Tubules . . . . . . 809
19.5.3. Multiwall Nanotubes and Arrays . . . . . . . . . . . 814
19.5.4. 1D Electronic Structure in a Magnetic Field . . . . . . 818
19.6. Electronic Structure: Experimental Results . . . . . . . . . . 825
19.6.1. Scanning Tunneling Spectroscopy Studies . . . . . . . 825
19.6.2. Transport Measurements . . . . . . . . . . . . . . 827
19.6.3. Magnetoresistance Studies . . . . . . . . . . . . . . 829
19.6.4. Magnetic Susceptibility Studies . . . . . . . . . . . . 833
19.6.5. Electron Energy Loss Spectroscopy Studies . . . . . . 838
19.7. Phonon Modes in Carbon Nanotubes . . . . . . . . . . . . . 839
19.7.1. Phonon Dispersion Relations . . . . . . . . . . . . 840
19.7.2. Calculated Raman- and Infrared-Active Modes . . . . . 845
19.7.3. Experiments on Vibrational Spectra of Carbon Nanotubes 850
19.8. Elastic Properties . . . . . . . . . . . . . . . . . . . . . 854
19.9. Filled Nanotubes . . . . . . . . . . . . . . . . . . . . . 858
19.10. Onion-Like Graphitic Particles . . . . . . . . . . . . . . . . 860
19.11. Possible Superconductivity in C60-Related Tubules . . . . . . . 863
References . . . . . . . . . . . . . . . . . . . . . . . . 864
CHAPTER 20
Applications of Carbon Nanostructures . . . . . . . . . . . . . . . 870
20.1. Optical Applications . . . . . . . . . . . . . . . . . . . . 870
20.1.1. Optical Limiter . . . . . . . . . . . . . . . . . . 871
20.1.2. Photoexcited C60-Polymer Composites . . . . . . . . 873
20.1.3. Photorefractivity in C60-Polymer Composites . . . . . . 876
20.2. Electronics Applications . . . . . . . . . . . . . . . . . . 880
20.2.1. C60 Transistors . . . . . . . . . . . . . . . . . . . 881
20.2.2. C60-Based Heterojunction Diodes . . . . . . . . . . . 884
20.2.3. C60-Polymer Composite Heterojunction Rectifying Diode 885
20.2.4. C60-Polymer Composite Heterojunction Photovoltaic
Devices . . . . . . . . . . . . . . . . . . . . . . 886
20.2.5. Microelectronic Fabrication and Photoresists . . . . . . 888
20.2.6. Silicon Wafer Bonding . . . . . . . . . . . . . . . 889
alıntı
CHAPTER 1
H i s t o r i c a l Introduction . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Early History . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Astronomical Observations . . . . . . . . . . . . . . . . . . 3
1.3. Carbon Cluster Studies . . . . . . . . . . . . . . . . . . . 3
1.4. Recent History . . . . . . . . . . . . . . . . . . . . . . . 6
1.5. Architectural Analogs . . . . . . . . . . . . . . . . . . . . 7
1.6. Biological and Geological Examples . . . . . . . . . . . . . . 9
1.7. Road Map . . . . . . . . . . . . . . . . . . . . . . . . . 12
References . . . . . . . . . . . . . . . . . . . . . . . . . 13
CHAPTER 2
Carbon Materials . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1. General Considerations . . . . . . . . . . . . . . . . . . . 15
2.2. Graphite . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3. Graphite Materials . . . . . . . . . . . . . . . . . . . . . 20
2.4. Graphite Whiskers . . . . . . . . . . . . . . . . . . . . . 21
2.5. Carbon Fibers . . . . . . . . . . . . . . . . . . . . . . . 21
2.6. Glassy Carbon . . . . . . . . . . . . . . . . . . . . . . . 24
2.7. Carbon Blacks . . . . . . . . . . . . . . . . . . . . . . . 25
2.8. Carbon Coated Carbide Particles . . . . . . . . . . . . . . . 29
2.9. Carbynes . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.10. Carbolites . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.11. Amorphous Carbon . . . . . . . . . . . . . . . . . . . . . 33
....CHAPTER 19
C60-Related Tubules and Spherules . . . . . . . . . . . . . . . . 756
19.1. Relation between Tubules and Fullerenes . . . . . . . . . . . 757
19.2. Experimental Observation of Carbon Nanotubes . . . . . . . . 761
19.2.1. Observation of Multiwall Carbon Nanotubes . . . . . . 761
19.2.2. Observation of Single-Wall Carbon Nanotubes . . . . . 765
19.2.3. Tubule Caps and Chirality . . . . . . . . . . . . . . 769
19.2.4. Carbon Nanocones . . . . . . . . . . . . . . . . . 777
19.2.5. Nanotube Synthesis . . . . . . . . . . . . . . . . . 778
19.2.6. Alignment of Nanotubes . . . . . . . . . . . . . . 785
19.3. Growth Mechanism . . . . . . . . . . . . . . . . . . . . 785
19.4. Symmetry Properties of Carbon Nanotubes . . . . . . . . . . 791
19.4.1. Specification of Lattice Vectors in Real Space . . . . . 791
19.4.2. Symmetry for Symmorphic Carbon Tubules . . . . . . 795
19.4.3. Symmetry for Nonsymmorphic Carbon Tubules . . . . . 797
19.4.4. Reciprocal Lattice Vectors . . . . . . . . . . . . . . 800
19.5. Electronic Structure: Theoretical Predictions . . . . . . . . . 802
19.5.1. Single-Wall Symmorphic Tubules . . . . . . . . . . . 803
19.5.2. Single-Wall Nonsymmorphic Chiral Tubules . . . . . . 809
19.5.3. Multiwall Nanotubes and Arrays . . . . . . . . . . . 814
19.5.4. 1D Electronic Structure in a Magnetic Field . . . . . . 818
19.6. Electronic Structure: Experimental Results . . . . . . . . . . 825
19.6.1. Scanning Tunneling Spectroscopy Studies . . . . . . . 825
19.6.2. Transport Measurements . . . . . . . . . . . . . . 827
19.6.3. Magnetoresistance Studies . . . . . . . . . . . . . . 829
19.6.4. Magnetic Susceptibility Studies . . . . . . . . . . . . 833
19.6.5. Electron Energy Loss Spectroscopy Studies . . . . . . 838
19.7. Phonon Modes in Carbon Nanotubes . . . . . . . . . . . . . 839
19.7.1. Phonon Dispersion Relations . . . . . . . . . . . . 840
19.7.2. Calculated Raman- and Infrared-Active Modes . . . . . 845
19.7.3. Experiments on Vibrational Spectra of Carbon Nanotubes 850
19.8. Elastic Properties . . . . . . . . . . . . . . . . . . . . . 854
19.9. Filled Nanotubes . . . . . . . . . . . . . . . . . . . . . 858
19.10. Onion-Like Graphitic Particles . . . . . . . . . . . . . . . . 860
19.11. Possible Superconductivity in C60-Related Tubules . . . . . . . 863
References . . . . . . . . . . . . . . . . . . . . . . . . 864
CHAPTER 20
Applications of Carbon Nanostructures . . . . . . . . . . . . . . . 870
20.1. Optical Applications . . . . . . . . . . . . . . . . . . . . 870
20.1.1. Optical Limiter . . . . . . . . . . . . . . . . . . 871
20.1.2. Photoexcited C60-Polymer Composites . . . . . . . . 873
20.1.3. Photorefractivity in C60-Polymer Composites . . . . . . 876
20.2. Electronics Applications . . . . . . . . . . . . . . . . . . 880
20.2.1. C60 Transistors . . . . . . . . . . . . . . . . . . . 881
20.2.2. C60-Based Heterojunction Diodes . . . . . . . . . . . 884
20.2.3. C60-Polymer Composite Heterojunction Rectifying Diode 885
20.2.4. C60-Polymer Composite Heterojunction Photovoltaic
Devices . . . . . . . . . . . . . . . . . . . . . . 886
20.2.5. Microelectronic Fabrication and Photoresists . . . . . . 888
20.2.6. Silicon Wafer Bonding . . . . . . . . . . . . . . . 889
alıntı