sEmih
Kayıtlı Üye
DENKLEM ÇÖZME
BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER
A. TANIM
a ve b gerçel (reel) sayılar ve a ¹ 0 olmak üzere,
ax + b = 0 eşitliğine birinci dereceden bir bilinmeyenli denklem denir.
Bu denklemi sağlayan x değerlerine denklemin kökü, denklemin kökünün oluşturduğu kümeye denklemin çözüm kümesi denir.
*
B. EŞİTLİĞİN ÖZELİKLERİ
1)* a = b ise, a ± c = b ± c dir.
2)* a = b ise, a . c = b . c dir.
3)* a = b ise,
4)* a = b ise, an = bn dir.
5)* a = b ise,
6)* (a = b ve b = c) ise, a = c dir.
7)* (a = b ve c = d) ise, a ± c = b ± d
8)* (a = b ve c = d) ise, a . c = b . d dir.
9)* (a = b ve c = d) ise,
10)* a . b = 0 ise, (a = 0 veya b = 0) dır.
11)* a . b ¹ 0 ise, (a ¹ 0 ve b ¹ 0) dır.
12)* = 0 ise, (a = 0 ve b ¹ 0) dır.
*
C. ax + b = 0 DENKLEMİNİN ÇÖZÜM KÜMESİ
1) a ¹ 0 olmak üzere,
*** ax + b = 0 ise,
2) (a = 0 ve b = 0) ise, ax + b = 0 denklemini bütün sayılar sağlar. Buna göre, reel (gerçel) sayılarda çözüm kümesi dir.
3) (a = 0 ve b ¹ 0) ise, ax + b = 0 denklemini sağlayan hiçbir sayı yoktur. Yani, Ç = Æ dir.
*
D. BİRİNCİ DERECEDEN İKİ BİLİNMEYENLİ DENKLEM SİSTEMİ
a, b, c Î , a ¹ 0 ve b ¹ 0 olmak üzere,
ax + by + c = 0 denklemine birinci dereceden iki bilinmeyenli denklem denir.
Bu denklem düzlemde bir doğru belirtir. Doğru üzerindeki bütün noktaların oluşturduğu ikililer denklemin çözüm kümesidir.
Buna göre, ax + by + c = 0 denkleminin çözüm kümesi birçok ikiliden oluşur...
BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER
A. TANIM
a ve b gerçel (reel) sayılar ve a ¹ 0 olmak üzere,
ax + b = 0 eşitliğine birinci dereceden bir bilinmeyenli denklem denir.
Bu denklemi sağlayan x değerlerine denklemin kökü, denklemin kökünün oluşturduğu kümeye denklemin çözüm kümesi denir.
*
B. EŞİTLİĞİN ÖZELİKLERİ
1)* a = b ise, a ± c = b ± c dir.
2)* a = b ise, a . c = b . c dir.
3)* a = b ise,
4)* a = b ise, an = bn dir.
5)* a = b ise,
6)* (a = b ve b = c) ise, a = c dir.
7)* (a = b ve c = d) ise, a ± c = b ± d
8)* (a = b ve c = d) ise, a . c = b . d dir.
9)* (a = b ve c = d) ise,
10)* a . b = 0 ise, (a = 0 veya b = 0) dır.
11)* a . b ¹ 0 ise, (a ¹ 0 ve b ¹ 0) dır.
12)* = 0 ise, (a = 0 ve b ¹ 0) dır.
*
C. ax + b = 0 DENKLEMİNİN ÇÖZÜM KÜMESİ
1) a ¹ 0 olmak üzere,
*** ax + b = 0 ise,
2) (a = 0 ve b = 0) ise, ax + b = 0 denklemini bütün sayılar sağlar. Buna göre, reel (gerçel) sayılarda çözüm kümesi dir.
3) (a = 0 ve b ¹ 0) ise, ax + b = 0 denklemini sağlayan hiçbir sayı yoktur. Yani, Ç = Æ dir.
*
D. BİRİNCİ DERECEDEN İKİ BİLİNMEYENLİ DENKLEM SİSTEMİ
a, b, c Î , a ¹ 0 ve b ¹ 0 olmak üzere,
ax + by + c = 0 denklemine birinci dereceden iki bilinmeyenli denklem denir.
Bu denklem düzlemde bir doğru belirtir. Doğru üzerindeki bütün noktaların oluşturduğu ikililer denklemin çözüm kümesidir.
Buna göre, ax + by + c = 0 denkleminin çözüm kümesi birçok ikiliden oluşur...