Salvo
Kayıtlı Üye
İş yaparken bir takım araçlardan faydalanırız. Bir basit makine, aletin bir noktasına bir dış kuvvet uygulandığında başka bir noktadaki cisme kuvvet uygulayan mekanik bir aygıttır. Basit makineler işleri yapmakta bir takım kolaylıklar sağlarlar. Bu araçlar kerpeten, kaldıraç, el arabası, palanga, makas, vida gibi araçlardır. Bu tip araçlara basit makineler denir.
Basit makineler enerji yaratmazlar. Enerjinin korunumu ilkesine göre bir makine kendisine verilenden daha fazla miktarda iş çıkışı sağlayamaz. Makineler çalışırken bir takım sürtünmelere maruz kaldıklarından dolayı ortaya çıkan iş giren işten daha küçüktür. Bir makineden alınan verim, giriş işin çıkış işine dönüştürme derecesinin ölçüsüdür. Bu ifadeyi formülle ifade edecek olursak;
Bir makine eğer yüzde yüz verimle çalışabilirse bu tip makinelere ideal makine denir. Fakat bu tür makine henüz yapılamamıştır.
Makineleri en fazla yararlı olduğu durum, herhangi bir enerji yaratamamalarına rağmen giriş kuvvetini büyültebilmeleridir. Basit makinelerin kuvvetleri artırabilme özelliğine mekanik yarar denir. Eğer F0'a makinenin kuvvet çıkışı, F1'e de giriş kuvveti dersek gerçek mekanik yarar (GMY) formülü şöyle olacaktır:
Kaldıraçlar
İş yaparken kullanılan metal, tahta veya buna benzer malzemelerden yapılan çubuklara kaldıraç denir. Günlük hayatta kullandığımız birçok kaldıraç vardır. Bunlardan bazıları şunlardır: Makas, el arabası, keser, kalas, gazoz açacağı.
Bir kaldıraç farklı kısımlardan meydana gelir. Kaldıraçta çubuğun dayandığı noktaya destek noktası, yükün bulunduğu yerden desteğe olan uzaklığa yük kolu, uygulanan kuvvetin desteğe olan uzaklığına kuvvet kolu denir. Kaldıraçlar farklı tiptedirler. Destek noktası ortada kuvvet ve yükün farklı uçlarda olduğu kaldıraç tipine birinci tip kaldıraçlar, destek noktası bir uçta yük ortada ve kuvvetin diğer uçta olduğu kaldıraçlara da ikinci tip kaldıraç denir. Birinci tip kaldıraçlara örnek olarak; makas, tahterevalli, eşit kollu terazi, ikinci tipe ise el arabası, fındık kıracağı verilebilir.
Kaldıraçların yaptığımız işte bize bir takım kolaylıklar sağladığını ifade etmiştik. Kaldıraç kullanılması ile büyük yükleri daha küçük kuvvet kullanarak yapabiliriz. Üstelik bazı işleri yapmak için bu tip araçlara gereksinim duyarız. Bilim adamının dediği gibi "Bana bir kaldıraç verin, dünyayı yerinden oynatayım" ifadesi abartılı olsa bile kaldıraçlar birçok işi daha kolay yapmaya yarar. Gazoz kapağını elimizle açmak yerine açacak kullanma, vidayı çıkarmak için anahtar kullanma, bir arabayı kaldırmak için kriko kullanma direkt yapılması çok zor işlemlerdir. Bunun için bu tip araçlar kullanırız.
Kaldıraç kullanmanın bir takım kuralları vardır. Eğer uygulanan kuvvet desteğe ne kadar uzak olursa o kadar az kuvvet uygulanır. Bu ifadeyi formülleştirecek olursak;
Kuvvet x Kuvvet kolu = Yük x Yük kolu
F1 x a1 = F2 x a2
Bir iş yaparken kaldıraç kullanmaktaki amaç işi kolaylaştırmaktır. Kaldıraçlar yardımı ile küçük kuvvetlerle büyük yükler kaldırılır fakat işten kazanç sağlanmaz. Kaldıraçlarla ilgili bir örnek verilecek olursa; 200 cm uzunluğundaki bir çubuğun bir ucunda 800 N ağırlığında bir yük vardır. Bu uçtan 40 cm uzaklıkta bir destek bulunmaktadır. Çubuğun diğer ucundan ne kadar büyüklükte kuvvet uygulanırsa bu yük kaldırılabilir?
Bu problemi çözmek için kullanılacak formül; F1 . a1 = F2 . a2 olacaktır. Formülde rakamları yerine koyduğumuzda
F1 . 150 = 800 . 40 F1 = (800 . 40) / 160 F1 = 32000 / 160 F1 = 200 N şeklinde olacaktır. Görüldüğü gibi yapılan işte elde edilen kazanç yükün 1/4 kadardır. Eğer kuvvet kolu daha uzakta olsa idi daha fazla kuvvet kazanılacağını deneyerek yapabilirsiniz?
Makaralar
Makaralar da iş yaparken bir takım kolaylıklar sağlayan basit makinelerdendir. Günlük yaşamda en fazla gördüğümüz şekliyle inşaatlarda harç, tuğla ve diğer yapı malzemelerini taşımak için kullanılmaktadır. Makaralar değişik tiplerden oluşmaktadır. Sabit, hareketli ve palanga makaralar olarak kullanılmaktadır.
Sabit Makaralar
Bir yere monte edilmiş şekilde kullanılan makaralardır. Kullanımda kuvvetin yönünü değiştirme özelliği vardır. Bu makaralar kuvvetten kazanç sağlar. Yükü kaldırmak için yüke eşit bir kuvvet kullanılır. P yükünü kaldırmak için ipin ucunu h kadar çekmek gerekir. Bu işlemde yükün kazanacağı enerji, kuvvetin yaptığı işe eşit olacağından formül şu şekilde oluşur;
P x h = F x h ise P = F olacaktır. Yani kuvvet = yük'tür. Sabit makaralarda kuvvetten ve yoldan kazanç yoktur.
Hareketli Makaralar
Hareketli makaralar, yükün makaranın eksenine asıldığı sistemlerdir. İpin bir ucu tavana asılır diğer uç ise kuvvet kullanılacak olan uçtur. Bu sistemde yük ve makara birlikte yükselir veya alçalır. Hareketli makaralarda yükü kaldırmak için uygulanacak kuvvet yükün yarısına eşdeğerdir. Yani F = P/2 şeklinde formülleştirilebilir. Hareketli makaraya bağlı olan bir yükü kaldırmak için ipi 2h kadar çekmek gerekir. Hareketli makaralarda enerjiden kazanç sağlamaz. Çünkü yük kuvvetin yaptığı iş kadar enerji kazanmaktadır.
Hareketli makaralar, sabit makaralarda olduğu gibi kuvvetin yönünde değişiklik meydana getirmez. Sabit makara ile kaldıramadığımız birçok yükü hareketli makaralar ile kaldırabiliriz. Örneğin 10 N'luk bir yükü kaldırmak için 5 N kuvvet uygulamak yeterlidir. Fakat yükü 2 metre yükseğe çıkarmak için 4 metre ip kullanmak gerekmektedir.
Palanga
Hareketli ve sabit makaraların birlikte kullanıldığı sistemlerdir. Palangalar hem kuvvetten kazanç sağlar hem de uygulanan kuvvetin yönünü değiştirir. Palangalar ile çok büyük kuvvetleri hareket ettirmek mümkündür. Bir palangada ne kadar çok ip ve makara kullanılırsa uygulanacak kuvvet de o kadar artacaktır. Palangaların kaldıracağı kuvvet miktarını belirlemek için bu sistemde kullanılan ip sayıları ile makaraların toplam yükü ile taşınacak yükün toplamı hesaba katılır. Bu ifadeyi formülleştirecek olursak;
Kuvvet = Toplam yük / İp sayısı yani F = P / n diyebiliriz.
EĞİK DÜZLEM
Farklı malzemeler yapılan ve yere belirli bir açı ile yerleştirilen düzeneklerdir. Bir eğik düzlem oluşturmak için bir kalasın bir ucunu yere diğer ucunu 10-20 cm yukarıya kaldırmak yeterlidir. BU sistem basit bir eğik düzlemi meydana getirir.
Eğik düzlem sistemini bir formül ile ifade edecek olursak; yükü P ile, uygulanacak kuvveti F ile sürtünmesiz eğik düzlemin uzunluğunu L ile ve Eğik düzlemin bir yere dayalı olan ucunu h ile ifade ettiğimizde F x L = P x h formülü ortaya çıkacaktır. Bu formülü açıklayacak olursak; Uygulanan kuvvet ve eğik düzlemin uzunluğu, P x h kadar iş yaparlar. Eğik düzlemde işten kazanç olmaz, kuvvetten kazanç olur.
Eğik düzlem sisteminde kuvvetin yüke olan oranı, eğik düzlemin yüksekliğinin eğik düzlemin boyuna olan oranına eşittir. Yani
Eğik düzlem üzerindeki yük h kadar yükseldiğinde Ep = P x h kadar potansiyel enerjiye sahip olur. Bu durumda kuvvet F x L kadar bir iş yapma durumundadır.
Dişli Çarklar ve Çıkrık
Çıkrık
Çıkrıklar, aynı eksen etrafında birlikte dönebilen iki veya daha fazla silindirden meydana gelirler. Bu sistemde yük küçük çaplı silindire bağlı iken kuvvet çapı büyük olan silindire etki eder. Çıkrıklar, kuyulardan su çekmek, tekstil fabrikalarında tezgahlarda ve eskiden yün eğirmek amacı için sıklıkla kullanılan basit makinelerdir.
Çıkrıkların çalışma sisteminde kuvvet ve yük arasındaki ilişkiyi göstermek için kuvvet ile çıkrık kolunun çarpımı, yük ile küçük silindirin yarı çarpımına olan eşitliğinden yararlanılır. Yani
Çıkrık sisteminde çıkrık kolu, küçük silindirin yarı çapından büyük olduğundan, uygulanan kuvvet yükten daha küçük olur. Yani çıkrıklarda kuvvetten kazanç sağlarlar ama işten ve enerjiden kazanç olmaz.
Çıkrık koluna uyguladığımız kuvvet, çıkrığın dönmesini sağlar. Bu dönme esnasında ip kovanın asılı olduğu küçük silindire dolanır ve yük yukarı doğru çıkar. Yukarıdaki formülden de çıkarılabileceği gibi çıkrıkta kuvvetle yükün oranı 1'den küçük olduğundan daha küçük kuvvetlerle büyük yükler kaldırılabilir. Çıkrıklarda diğer basit makinelerde olduğu gibi kuvvetten kazanç sağlanırken iş veya enerjiden kazanç sağlanmaz.
Dişli Çarklar
Bazı sistemlerde birden daha fazla çıkrığın bir arada kullanılması gerekmektedir. Çünkü yük tek çıkrıkla kaldırılamayacak kadar büyük olabilir veya sistem daha rahat çalışır. Dişili çarklarda kuvvetten kazanç yanında hareketin yönünün değiştirilmesi gerçekleşmektedir. Bu sistemde bir çıkrığa uygulanan kuvvet diğer çıkrığa aktarılır ve dönme sağlanır. Bu tip basit makinelere örnek olarak bisikletler, dikiş makineleri, vinçler, saatler, taşıtlar verilebilir.
Yukarıdaki örnekte ilk çark saat yönünün tersine doğru döndürülürse ikinci çark saat yönünde dönecektir. Bu çarka bağlı olan diğer çark da yine saat yönüne ters istikamette dönecektir. Bu şekilde birçok çark birbirine bağlanarak sistemler oluşturulur ve hareketin yönü değiştirilerek daha az kuvvet ile iş yapma imkanı doğar.
Bir sistemdeki çarklardan bir tanesini yarıçapı diğer çarkın 5 katı ise yarı çapı büyük olan 1 devir yaparken yarı çapı küçük olan 5 devir yapar. Bir çark sisteminde r1 yarıçaplı çarkın devir sayısına n1 denilirse, yarıçapı r2 olanın devir sayısı n2 olacaktır. Bunu formülleştirecek olursak şu şekilde olacaktır:
Dişli çarklarla büyük yükleri daha küçük kuvvetler kullanarak kaldırma imkanımız vardır. Bu basit makinelerde kuvvette kazanç sağlarken enerji veya işte kazanç sağlamazlar.
Kama ve Vida
Uçları üçgen bir şekilde olan ve baltaya benzeyen cisimlere kama denir. Bu basit makineler metalden veya tahtadan yapılırlar ve kesicidirler. Bir nesne kesilmek istendiğinde kamanın keskin ucu bu noktaya konulur ve üst kısmına sert bir cisimle vurularak basınç oluşturulur böylece nesne kesilir.
Vida ise yine metal veya tahtadan yapılan ve bazı cisimleri birbirine tutturmak veya monte etmek amacı için kullanılan basit makinelerdir. Vidalar üst kısımlarındaki yarıklara tornavida sokularak döndürülür ve istenilen kısımlara tutturulur. Birçok eşyanın ve aracın bir araya getirilmesinde vidalar kullanılır.
Enerjinin korunumu ikesine göre; vida başının yaptığı iş, ucunun yaptığı işe eşittir:
Vida 1 tur attığında vida ucu zeminde a kadar yol alacağından;
F x (2πr) = N. a
r: Vida başının yarıçapı(kuvvet kolu)
a: Vida adımı (ardışık iki diş arası uzaklık)
N: Zeminin tepki kuvveti
Basit makineler enerji yaratmazlar. Enerjinin korunumu ilkesine göre bir makine kendisine verilenden daha fazla miktarda iş çıkışı sağlayamaz. Makineler çalışırken bir takım sürtünmelere maruz kaldıklarından dolayı ortaya çıkan iş giren işten daha küçüktür. Bir makineden alınan verim, giriş işin çıkış işine dönüştürme derecesinin ölçüsüdür. Bu ifadeyi formülle ifade edecek olursak;
Bir makine eğer yüzde yüz verimle çalışabilirse bu tip makinelere ideal makine denir. Fakat bu tür makine henüz yapılamamıştır.
Makineleri en fazla yararlı olduğu durum, herhangi bir enerji yaratamamalarına rağmen giriş kuvvetini büyültebilmeleridir. Basit makinelerin kuvvetleri artırabilme özelliğine mekanik yarar denir. Eğer F0'a makinenin kuvvet çıkışı, F1'e de giriş kuvveti dersek gerçek mekanik yarar (GMY) formülü şöyle olacaktır:
Kaldıraçlar
İş yaparken kullanılan metal, tahta veya buna benzer malzemelerden yapılan çubuklara kaldıraç denir. Günlük hayatta kullandığımız birçok kaldıraç vardır. Bunlardan bazıları şunlardır: Makas, el arabası, keser, kalas, gazoz açacağı.
Bir kaldıraç farklı kısımlardan meydana gelir. Kaldıraçta çubuğun dayandığı noktaya destek noktası, yükün bulunduğu yerden desteğe olan uzaklığa yük kolu, uygulanan kuvvetin desteğe olan uzaklığına kuvvet kolu denir. Kaldıraçlar farklı tiptedirler. Destek noktası ortada kuvvet ve yükün farklı uçlarda olduğu kaldıraç tipine birinci tip kaldıraçlar, destek noktası bir uçta yük ortada ve kuvvetin diğer uçta olduğu kaldıraçlara da ikinci tip kaldıraç denir. Birinci tip kaldıraçlara örnek olarak; makas, tahterevalli, eşit kollu terazi, ikinci tipe ise el arabası, fındık kıracağı verilebilir.
Kaldıraçların yaptığımız işte bize bir takım kolaylıklar sağladığını ifade etmiştik. Kaldıraç kullanılması ile büyük yükleri daha küçük kuvvet kullanarak yapabiliriz. Üstelik bazı işleri yapmak için bu tip araçlara gereksinim duyarız. Bilim adamının dediği gibi "Bana bir kaldıraç verin, dünyayı yerinden oynatayım" ifadesi abartılı olsa bile kaldıraçlar birçok işi daha kolay yapmaya yarar. Gazoz kapağını elimizle açmak yerine açacak kullanma, vidayı çıkarmak için anahtar kullanma, bir arabayı kaldırmak için kriko kullanma direkt yapılması çok zor işlemlerdir. Bunun için bu tip araçlar kullanırız.
Kaldıraç kullanmanın bir takım kuralları vardır. Eğer uygulanan kuvvet desteğe ne kadar uzak olursa o kadar az kuvvet uygulanır. Bu ifadeyi formülleştirecek olursak;
Kuvvet x Kuvvet kolu = Yük x Yük kolu
F1 x a1 = F2 x a2
Bir iş yaparken kaldıraç kullanmaktaki amaç işi kolaylaştırmaktır. Kaldıraçlar yardımı ile küçük kuvvetlerle büyük yükler kaldırılır fakat işten kazanç sağlanmaz. Kaldıraçlarla ilgili bir örnek verilecek olursa; 200 cm uzunluğundaki bir çubuğun bir ucunda 800 N ağırlığında bir yük vardır. Bu uçtan 40 cm uzaklıkta bir destek bulunmaktadır. Çubuğun diğer ucundan ne kadar büyüklükte kuvvet uygulanırsa bu yük kaldırılabilir?
Bu problemi çözmek için kullanılacak formül; F1 . a1 = F2 . a2 olacaktır. Formülde rakamları yerine koyduğumuzda
F1 . 150 = 800 . 40 F1 = (800 . 40) / 160 F1 = 32000 / 160 F1 = 200 N şeklinde olacaktır. Görüldüğü gibi yapılan işte elde edilen kazanç yükün 1/4 kadardır. Eğer kuvvet kolu daha uzakta olsa idi daha fazla kuvvet kazanılacağını deneyerek yapabilirsiniz?
Makaralar
Makaralar da iş yaparken bir takım kolaylıklar sağlayan basit makinelerdendir. Günlük yaşamda en fazla gördüğümüz şekliyle inşaatlarda harç, tuğla ve diğer yapı malzemelerini taşımak için kullanılmaktadır. Makaralar değişik tiplerden oluşmaktadır. Sabit, hareketli ve palanga makaralar olarak kullanılmaktadır.
Sabit Makaralar
Bir yere monte edilmiş şekilde kullanılan makaralardır. Kullanımda kuvvetin yönünü değiştirme özelliği vardır. Bu makaralar kuvvetten kazanç sağlar. Yükü kaldırmak için yüke eşit bir kuvvet kullanılır. P yükünü kaldırmak için ipin ucunu h kadar çekmek gerekir. Bu işlemde yükün kazanacağı enerji, kuvvetin yaptığı işe eşit olacağından formül şu şekilde oluşur;
P x h = F x h ise P = F olacaktır. Yani kuvvet = yük'tür. Sabit makaralarda kuvvetten ve yoldan kazanç yoktur.
Hareketli Makaralar
Hareketli makaralar, yükün makaranın eksenine asıldığı sistemlerdir. İpin bir ucu tavana asılır diğer uç ise kuvvet kullanılacak olan uçtur. Bu sistemde yük ve makara birlikte yükselir veya alçalır. Hareketli makaralarda yükü kaldırmak için uygulanacak kuvvet yükün yarısına eşdeğerdir. Yani F = P/2 şeklinde formülleştirilebilir. Hareketli makaraya bağlı olan bir yükü kaldırmak için ipi 2h kadar çekmek gerekir. Hareketli makaralarda enerjiden kazanç sağlamaz. Çünkü yük kuvvetin yaptığı iş kadar enerji kazanmaktadır.
Hareketli makaralar, sabit makaralarda olduğu gibi kuvvetin yönünde değişiklik meydana getirmez. Sabit makara ile kaldıramadığımız birçok yükü hareketli makaralar ile kaldırabiliriz. Örneğin 10 N'luk bir yükü kaldırmak için 5 N kuvvet uygulamak yeterlidir. Fakat yükü 2 metre yükseğe çıkarmak için 4 metre ip kullanmak gerekmektedir.
Palanga
Hareketli ve sabit makaraların birlikte kullanıldığı sistemlerdir. Palangalar hem kuvvetten kazanç sağlar hem de uygulanan kuvvetin yönünü değiştirir. Palangalar ile çok büyük kuvvetleri hareket ettirmek mümkündür. Bir palangada ne kadar çok ip ve makara kullanılırsa uygulanacak kuvvet de o kadar artacaktır. Palangaların kaldıracağı kuvvet miktarını belirlemek için bu sistemde kullanılan ip sayıları ile makaraların toplam yükü ile taşınacak yükün toplamı hesaba katılır. Bu ifadeyi formülleştirecek olursak;
Kuvvet = Toplam yük / İp sayısı yani F = P / n diyebiliriz.
EĞİK DÜZLEM
Farklı malzemeler yapılan ve yere belirli bir açı ile yerleştirilen düzeneklerdir. Bir eğik düzlem oluşturmak için bir kalasın bir ucunu yere diğer ucunu 10-20 cm yukarıya kaldırmak yeterlidir. BU sistem basit bir eğik düzlemi meydana getirir.
Eğik düzlem sistemini bir formül ile ifade edecek olursak; yükü P ile, uygulanacak kuvveti F ile sürtünmesiz eğik düzlemin uzunluğunu L ile ve Eğik düzlemin bir yere dayalı olan ucunu h ile ifade ettiğimizde F x L = P x h formülü ortaya çıkacaktır. Bu formülü açıklayacak olursak; Uygulanan kuvvet ve eğik düzlemin uzunluğu, P x h kadar iş yaparlar. Eğik düzlemde işten kazanç olmaz, kuvvetten kazanç olur.
Eğik düzlem sisteminde kuvvetin yüke olan oranı, eğik düzlemin yüksekliğinin eğik düzlemin boyuna olan oranına eşittir. Yani
Eğik düzlem üzerindeki yük h kadar yükseldiğinde Ep = P x h kadar potansiyel enerjiye sahip olur. Bu durumda kuvvet F x L kadar bir iş yapma durumundadır.
Dişli Çarklar ve Çıkrık
Çıkrık
Çıkrıklar, aynı eksen etrafında birlikte dönebilen iki veya daha fazla silindirden meydana gelirler. Bu sistemde yük küçük çaplı silindire bağlı iken kuvvet çapı büyük olan silindire etki eder. Çıkrıklar, kuyulardan su çekmek, tekstil fabrikalarında tezgahlarda ve eskiden yün eğirmek amacı için sıklıkla kullanılan basit makinelerdir.
Çıkrıkların çalışma sisteminde kuvvet ve yük arasındaki ilişkiyi göstermek için kuvvet ile çıkrık kolunun çarpımı, yük ile küçük silindirin yarı çarpımına olan eşitliğinden yararlanılır. Yani
Çıkrık sisteminde çıkrık kolu, küçük silindirin yarı çapından büyük olduğundan, uygulanan kuvvet yükten daha küçük olur. Yani çıkrıklarda kuvvetten kazanç sağlarlar ama işten ve enerjiden kazanç olmaz.
Çıkrık koluna uyguladığımız kuvvet, çıkrığın dönmesini sağlar. Bu dönme esnasında ip kovanın asılı olduğu küçük silindire dolanır ve yük yukarı doğru çıkar. Yukarıdaki formülden de çıkarılabileceği gibi çıkrıkta kuvvetle yükün oranı 1'den küçük olduğundan daha küçük kuvvetlerle büyük yükler kaldırılabilir. Çıkrıklarda diğer basit makinelerde olduğu gibi kuvvetten kazanç sağlanırken iş veya enerjiden kazanç sağlanmaz.
Dişli Çarklar
Bazı sistemlerde birden daha fazla çıkrığın bir arada kullanılması gerekmektedir. Çünkü yük tek çıkrıkla kaldırılamayacak kadar büyük olabilir veya sistem daha rahat çalışır. Dişili çarklarda kuvvetten kazanç yanında hareketin yönünün değiştirilmesi gerçekleşmektedir. Bu sistemde bir çıkrığa uygulanan kuvvet diğer çıkrığa aktarılır ve dönme sağlanır. Bu tip basit makinelere örnek olarak bisikletler, dikiş makineleri, vinçler, saatler, taşıtlar verilebilir.
Yukarıdaki örnekte ilk çark saat yönünün tersine doğru döndürülürse ikinci çark saat yönünde dönecektir. Bu çarka bağlı olan diğer çark da yine saat yönüne ters istikamette dönecektir. Bu şekilde birçok çark birbirine bağlanarak sistemler oluşturulur ve hareketin yönü değiştirilerek daha az kuvvet ile iş yapma imkanı doğar.
Bir sistemdeki çarklardan bir tanesini yarıçapı diğer çarkın 5 katı ise yarı çapı büyük olan 1 devir yaparken yarı çapı küçük olan 5 devir yapar. Bir çark sisteminde r1 yarıçaplı çarkın devir sayısına n1 denilirse, yarıçapı r2 olanın devir sayısı n2 olacaktır. Bunu formülleştirecek olursak şu şekilde olacaktır:
Dişli çarklarla büyük yükleri daha küçük kuvvetler kullanarak kaldırma imkanımız vardır. Bu basit makinelerde kuvvette kazanç sağlarken enerji veya işte kazanç sağlamazlar.
Kama ve Vida
Uçları üçgen bir şekilde olan ve baltaya benzeyen cisimlere kama denir. Bu basit makineler metalden veya tahtadan yapılırlar ve kesicidirler. Bir nesne kesilmek istendiğinde kamanın keskin ucu bu noktaya konulur ve üst kısmına sert bir cisimle vurularak basınç oluşturulur böylece nesne kesilir.
Vida ise yine metal veya tahtadan yapılan ve bazı cisimleri birbirine tutturmak veya monte etmek amacı için kullanılan basit makinelerdir. Vidalar üst kısımlarındaki yarıklara tornavida sokularak döndürülür ve istenilen kısımlara tutturulur. Birçok eşyanın ve aracın bir araya getirilmesinde vidalar kullanılır.
Enerjinin korunumu ikesine göre; vida başının yaptığı iş, ucunun yaptığı işe eşittir:
Vida 1 tur attığında vida ucu zeminde a kadar yol alacağından;
F x (2πr) = N. a
r: Vida başının yarıçapı(kuvvet kolu)
a: Vida adımı (ardışık iki diş arası uzaklık)
N: Zeminin tepki kuvveti